a2 United States Patent

Jain et al.

US009229890B2

US 9,229,890 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND A SYSTEM FOR
INTEGRATING DATA FROM A SOURCE TO A
DESTINATION
(75) Inventors: Sandeep Jain, Palo Alto, CA (US);
Prakash Chandra Tiwary, Gurgaon
(IN)

(73) Assignees: SANDEEP JAIN CA (US); PRAKASH
CHANDRA TIWARY, Gurgaon (IN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 379 days.

@
(22)

Appl. No.: 13/457,497

Filed: Apr. 27, 2012

(65) Prior Publication Data

US 2013/0117229 Al May 9, 2013

Related U.S. Application Data

Provisional application No. 61/480,291, filed on Apr.
28, 2011.

(60)

Int. Cl1.
GO6F 17/30
GO6F 13/22
U.S. CL
CPC ...

(51)
(2006.01)
(2006.01)
(52)
GOGF 13/22 (2013.01); GOGF 17/30008

(2013.01); GO6F 17/30575 (2013.01)

(58) Field of Classification Search
CPC oottt GOG6F 17/30575

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2004/0193952 Al1* 9/2004 Narayananetal. ... 714/13
2005/0027755 Al* 2/2005 Shahetal. 707/201
2005/0256907 Al* 11/2005 Novik etal. 707/200
2006/0242444 Al* 10/2006 Novik etal. 713/400
2007/0100834 Al* 5/2007 Landryetal. 707/10

* cited by examiner

Primary Examiner — Syed Hasan
(74) Attorney, Agent, or Firm — Barry Choobin; Patent 360
LLC

(57) ABSTRACT

The embodiments herein provide a system and a method for
integrating a data from a source to a destination. The method
comprises generating a global-id, setting an event-id corre-
sponding to an entity id in the global id, polling a data from a
source, sorting changes of a source system based on a time of
update and an entity id, creating and comparing an old as of
state value and a new as of state value for each field for each
update in the entity in the source and destination to detect a
conflict on an entity, sending a time of update in the entity and
a revision id of a change to the destination, comparing the
global id with an event id for each entity at the destination to
detect a presence of an entity in the destination and processing
an entity at the destination based an event id.

6 Claims, 3 Drawing Sheets

I Event-id is set

}»101

l A data from a plurality of entities 15 polled lf*l(ﬁz

; A plurality of changes are sorted 'f‘l 83
An old a3 of siate value is created

104

I A new as of state value is created l/‘ms

l An event Is sent to a destination system l/ﬂ 06

The created old as of state value and the created 107
new as of state values are created

A time of update i the entity and a revision id is L.~108

sent

| The global id with an event id are compaved

r‘l a9

l An entity at the destination system is processed

}/‘1 10

l A mudtistep recovery process s performed

r"] 1

U.S. Patent Jan. 5,2016 Sheet 1 of 3 US 9,229,890 B2

Event-id 1s st 3.—-&1{;1

k

A data from a plurality of entities 1s polled 102

y

A plurality of changes are sorted 103

An old as of siate value is created

b 1 04
A new as of state value 1s created 105
An event 1s sent to a destination system L 106

The created old as of state value and the created L—yg7
new as of state values are created

A time of update in the entity and a revision id {5 L—~108
sent |

The global 1d with an event id are compared 109

An enatity gt the destination system is processed 110

X

A multistep recovery process is performed 111

FIG. 1

U.S. Patent Jan. 5,2016 Sheet 2 of 3 US 9,229,890 B2

Destination-
Source-209
ource- 222 210
F)

Mapping
Manager-203

A 4 ¥
Polling Module- »| Processing o} Adapter Module-
287 Manager-202 208
X k4
Recovery | Failare [¢ Conflict
Manager-204 Manager-206 Manager-203

FiG. 2

U.S. Patent Jan. 5,2016 Sheet 3 of 3 US 9,229,890 B2

. Y
gy | (Processing Manager-202
Process Rules
Engine~-301 Engine-302
> <
Mapping Manager-202
n §| Transformation Mapping User Mapping
"_:3 & Services-303 Services-304
g tﬁn \. v
S § y j . _ '
< < Cenflict Manager-205
£ 5
5 = 1
= s Recovery Manager-204
f"
Poller Module- Adapter Module~
287 208
i 1 AN Connector Framework-201)
- /

FIG. 3

US 9,229,890 B2

1
METHOD AND A SYSTEM FOR
INTEGRATING DATA FROM A SOURCE TO A
DESTINATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the priority under 35 USC 119(e)
of U.S. Provisional Application Ser. No. 61/480,291 filed
Apr. 28, 2011 which is included by reference herein.

BACKGROUND

1. Technical Field

The embodiments herein generally relate to a data integra-
tion process and particularly relate to a method of integrating
a data from a source to a destination. The embodiments herein
more particularly relate to a method and system for integrat-
ing a data from a source to a destination in real time.

2. Description of the Related Art

A data integration process involves combining a data resid-
ing in different sources and providing the users with a unified
view of the data. In this process, a data is frequently fetched
(polled) from a source system to achieve the changes in the
destination. The data integration process becomes significant
in a variety of situations such as commercial and scientific
fields. In commercial field, the data integration plays very
important role in merging the databases of two similar com-
panies. In a similar way, there is a need to provide an integra-
tion among the data in scientific field while combining the
research results from different repositories.

An important aspect of data integration is writing the
polled data at the destination after processing the polled data.
At present there are many systems and methods for process-
ing a data. A polling of the data from a source system means
reading the data from the source system. A processing of the
data involves writing the authenticated data in the destination
system after reading a data from the source system. A polling
frequency indicates a frequency of polling and reading the
data from the source. A difference in time between two poll-
ing processes is referred as a polling interval. A polling data
can be a data of same entity or different entities or new entity.

An integration solution is always expected to process the
data as soon as it is generated at the source. A polling process
can be done frequently to bring the changes quickly. But this
is not enough to bring the source and destination systems in a
synchronized stated until the polled data is processed. After
processing the data the systems are synchronized. Therefore
a processing of the data need to be fast besides a frequent
polling process. One way of achieving a quick processing of
data is to perform a parallel processing operation. The pro-
cessing of the data in parallel can work as long the data are
independent in nature. But the parallel processing will bring
either inconsistency or failure when the data are dependent on
each other.

An integration solution provides an effective way to keep
two systems in a synchronized state. So it is very important to
transfer all the changes from the source to the destination in
an integration process. For fetching all the changes, the inte-
gration solution has to look into a source after every preset
time interval, to check for any updates of an entity. The
standard integration solution is designed based on a current
state of date. Consider a case in which an entity gets updated
more than once between two successive polling intervals.
Consider case in which a first polling is done at a time t1 and
the next polling is done at a time t5. But before t5 and after t1,
the entity E1 is updated twice at the times t2 and t4. ¢l is a

10

20

25

30

40

45

55

2

change done at the time t2 and c2 is the change done at the
time t4. Now suppose that the change c2 is dependent on the
change c1 so that the change c2 can only be made only after
doing the change c1. During an integration process, the poll-
ing done at t5 will fetch the entity E1 updated at t4 so that only
the latest state of E1 which is ¢2 is polled and synchronized to
the destination. The change c1 is not synchronized to desti-
nation and c2 fails as c1 which is a prerequisite is not found in
the destination. One way of solving the problem is to attach a
trigger to the source. The trigger on each update in system
publishes a change list to the integration system. The integra-
tion system can then work on it effectively. In the above case,
atrigger is generated to invoke an integration application with
the set of changes done in c1 as soon as a change c1 is done
and it will be repeated for c2. This allows the integration
system to track all the changes done in the system and the
integration solution will be able to synchronize the changes
immediately. But consider the case in which an integration
system goes down because of power shutdown or system
crash or some other run time failures. Whenever there is any
change in system, a trigger invokes an integration system and
ensures that no other component is activated. When the trig-
ger does not initiate any action, then the integration system
will miss the change. Even when the trigger initiates an
exemption then also the integration system will miss the
change. When the integration system is operated afterwards,
it will be unaware of the changes made to the entity in the
source system and will try to synchronize the next incoming
change normally. Thus attaching the trigger also does not
work at times. This solution is not versatile and does not
provide a robust approach.

Every integration solution has two functions. One function
is a polling process to fetch all the changes to an entity from
the system and pass the same for further processing. The
integration solution also functions as an adapter to accept the
changes coming from other systems to write the same to the
destination. During a polling process, the integration solution
has to take care of various expected and unexpected failure
cases besides a data fetching process to ensure that all the
changes are polled and a given change is fetched only once.
Similarly the adapter is operated not only for writing the
changes but also for ensuring that no change is written twice
or no change is overwritten in the destination. Even when the
polling module ensures that no change is polled and sent
twice, the adapter is also operated to prevent the handling of
update request coming more than once. For any good integra-
tion solution, all parts are decoupled from each other and all
the components are not aware of the existence of anything
else than their function in an integration solution. The polling
partis not aware of the working and functioning of the adapter
and the same holds good for the adapter too. Sometimes the
adapter has to handle the situation in which a same change is
to be written twice in the destination. Consider a case in
which the adapter does not keep track of the changes till the
changes are written. The adapter fetches an event E1 and
writes the same to destination with state S1 and system goes
down afterwards. Now a user comes and updates the destina-
tion entity to a state S2. When the polling module sends the
entity E1 again at this moment due to some reason, then the
adapter will write E1 again rolling back the state in S2 to S1.
To ensure that the adapter does not roll back any changes done
by an external user, it is important to check whether the event
has already been addressed or not. It can be solved in one way
by comparing a current/latest state in the destination with the
incoming new values and updating the new value in the des-
tination when it is found that the latest state/value is not same
as the new value. But this solution does not work when the

US 9,229,890 B2

3

destination is updated by some other user and the incoming
new values may not be equal to the current state in the desti-
nation after this update. As a result, the adapter will overwrite
the new changes done by user and will roll back to the old
state thereby leading to the old problem. Thus the currently
available solutions do not solve the failures in the integration
process fully and reliably. Thus the sync is not recoverable
with the existing solutions for any kind of failures.

The main job of an integration solution is to synchronize
the data from a source to a destination and to keep all the
updates done in the source in a synchronized condition with
the destination. It is very critical for an integration solution to
ensure that the source data is written at a right place in the
destination. Any failure in a synchronization process results
in an invalid or irrecoverable condition in the destination
which may result in a loss to the company in terms of time or
money as important data is no more valid. Hence there is a
need to develop an integration process to ensure that the data
is written at a right place in the destination.

Consider a case in which a user created an entity E1 in a
source system and the integration solution fetched the entity
and wrote the same into the destination as TE1. A synchro-
nisation process is carried out once but there is a need to
consider the further updates done on El. The integration
solution has to ensure that the further updates are written on
TE1. When there is a failure in the integration process and
TE2 is updated, then the first user will lose data in TE2 and
TE1 will not be in a synchronized condition. The integration
solution has to identify the right entity since the update has to
be written only on the right entity at the destination. And also
the integration has to confirm that E1 in the source is in the
same state as the TE1 in destination. The currently available
solutions for achieving this explained as follows. The name or
title of the entity is checked first. Secondly a primary key is
written in the custom field in a target. By sorting the entity by
name, an entity E1 in the source created with name N1 is
synchronized to the destination with the same name N1.
When the entity E1 is updated next time, then the destination
is searched to get the entity with name N1. When TE1 is
obtained based on the name N1, then TE1 is updated cor-
rectly. But systems can allow different entities to have the
same name. For example, when an entity E2 is also assigned
with a name N1 in the source, then TE2 is also assigned with
the same name N1 in the destination or target. In such a
condition it will be difficult to select an entity (TE1 or TE2)
from the destination based on name for updating when E1 or
E2 is updated at the source, as both the TE1 and TE2 are
assigned with the same name N1 in the destination. Thus a
process of searching an entity by name to update the changes
in the destination does notresult in a proper updating process.
Hence a global id is generated to solve this problem. With the
existing global id generation method, it is very difficult to find
the replica of the entity in all the synchronized systems.
Further the existing solutions are also not extensible.

According to embodiment herein, the system further com-
prises using an event based trigger and a scheduler based
trigger to poll and synchronize a data from a source to a
destination.

When a poll is active at the time of a scheduler based
trigger, then the scheduler based trigger is skipped. When an
event based trigger is received and no poll is active, then the
event based trigger kicks off the polling process. When the
poll is active, the event based trigger sets a flag indicating a
need to repoll at the end of a poll. At the end of a poll, the
repoll flag is checked for. When the repoll flag is set, then
another poll cycle is immediately kicked off.

10

15

20

25

30

35

40

45

50

55

60

65

4

Hence, there is a need for a method for integrating a data
from a source to a destination in real time to replicate all the
changes done to an entity in the source in the destination
without missing any updates. There is also a need for a
method to address the problems with incremental changes,
bulk changes, changes from multiple locations of a source.
Further there is a need for a solution to integrate a data based
on a as of state condition of the entity. Yet there is a need to
integrate a data using a multistep recovery process.

The abovementioned shortcomings, disadvantages and
problems are addressed herein and which will be understood
by reading and studying the following specification.

OBIECTS OF THE EMBODIMENTS

The primary object of the embodiments herein is to provide
a method and system for integrating a data from a source to a
destination.

Another object of the embodiments herein is to provide a
method and system for integrating a data from a source to a
destination in real time.

Yet another object of the embodiments herein is provide a
method and system for integrating a data from a source to a
destination to solve a problem of multiple updates of a single
entity between two polling interval.

Yet another object of the embodiments herein is to provide
a method and system for integrating a data from a source to a
destination to recover a changes in the data after a failure in an
integration process.

Yet another object of the embodiments herein is to provide
a method and system for integrating a data from a source to a
destination to provide a method for generating unique global
id and event-id across a system to solve the update of entitles
with a same name.

Yet another object of the embodiments herein is to provide
a method and system for integrating a data from a source to a
destination to easily create Multi-Point interconnections.

Yet another object of the embodiments herein is to provide
a method and system for integrating a data from a source to a
destination to use the established connectors to connect
appropriate systems.

Yet another object of the embodiments herein is to provide
a method and system for integrating a data from a source to a
destination to create and manage the custom mappings.

Yet another object of the embodiments herein is provide a
method and system for integrating a data from a source to a
destination to provide a built in support for recovery manage-
ment, conflict detection and management, failure manage-
ment.

Yet another object of the embodiments herein is to provide
a method and system for integrating a data from a source to a
destination to provide a communication in real-time.

Yet another object of the embodiments herein is to provide
a method and system for integrating a data from a source to
provide a destination support for pre and post commit event
handling.

Yet another object of embodiments herein is to provide a
method and system for integrating a data from a source to a
destination to provide an extensible and easy to integrate/
support additional tools/systems.

Yet another object of the embodiments herein is to provide
simple installation, support and maintenance of integration
solution.

Yet another object of the embodiments herein is to provide
a method and system for integrating a data from a source to a
destination to make use of a hub and spoke topology, to

US 9,229,890 B2

5

decouple a source and a destination by inserting a central
component acting as an active mediator.

Yet another object of the embodiments herein is provide a
method and system for integrating a data from a source to a
destination to use hub and spoke technology to provide a
flexibility of a system extension.

These and other objects and advantages of the embodiment
herein will become readily apparent from the following sum-
mary and the detailed description taken in conjunction with
the accompanying drawings.

SUMMARY

The various embodiments herein provide a method and
system for integrating a data from a source to a destination.
The method for integrating a data from a source to a destina-
tion comprises generating a global-id by concatenating a
source system, name of an entity, an entity project id and an
entity id, setting an event-id corresponding to an entity id in
the global id, polling a data from a plurality of entities of a
source system, sorting a plurality of changes of a source
system based on a time of update and an entity id, creating an
old as of state value for each field for each update in the entity
in the source system, creating a new as of state value for each
field for each update in the entity in the destination system,
sending an event to a destination system with the old as of
state value and the new as of state value for each update in the
entity, comparing the created old as of state value and the
created new as of state values for each field for update in the
entity to detect a conflict on an entity, sending a time of update
in the entity and a revision id of a change to the destination,
comparing the global id with an event id for each entity at the
destination to detect a presence of an entity in the destination
system and processing an entity at the destination system
based an event id.

The method further comprises a step of performing a mul-
tistep recovery process to ensure a reliable synchronization of
entity and to recover a synchronization of entity in case of a
transaction failure of any kind, when a main transaction pro-
cess has a plurality of sub transactions so that a recovery and
synchronization of a data up to a sub transaction level is
possible. The old as of state value and the new as of state
values are created for each field for update in the entity to
synchronize an event in the destination.

According to an embodiment herein, a step of processing
the entity at the destination system comprises executing a
main transaction process for the entity with the same global
id, dividing the update process for the entity into a plurality of
sub transactions, assigning a substep number to each sub
transaction in the update process, comparing a time of revi-
sion of a last update value in the source system with a time of
revision of a last update value in the destination system,
processing the entity at the destination system based on a
comparison of the time of revision of the last update value in
the source system with the time of revision of the last update
value in the destination system and creating a new entity with
an event id equal to the first global id. The new entity is
created when no entity is found in the destination system with
a same global id. The main transaction process is an update
process for the entity.

According to an embodiment herein, a step of processing
the entity at the destination system based on a comparison of
the time of revision of the last update value in the source
system with the time of revision of the last update value in the
destination system comprises updating the entity at the des-
tination system, comparing a step number assigned to a sub
transaction corresponding to a last update process in the

10

15

20

25

30

35

40

45

50

55

60

65

6

source system with the step number assigned to a sub trans-
action corresponding to a last update process in the destina-
tion system and performing a sub transaction of the update
process. The entity is updated when the time of revision of the
last update value in the source system is greater than the time
of revision of the last update value in the destination system
and the global id is equal to the event id of the entity.

According to an embodiment of the embodiments herein, a
step number assigned to a sub transaction corresponding to a
lastupdate process in the source system with the step number
assigned to a sub transaction corresponding to a last update
process in the destination system is compared when the time
of revision of the last update value in the source system is
smaller than or equal to the time of revision of the last update
value in the destination system.

According to an embodiment herein, a step of performing
the sub transaction of the update process comprises process-
ing a sub transaction of the update process and moving a
control to a next step in the update process when the step
number assigned to a sub transaction corresponding to the last
update process in the source system is smaller than the step
number assigned to a sub transaction corresponding to the last
update process in the destination system. The sub transaction
is processed when the step number assigned to a sub transac-
tion corresponding to the last update process in the source
system is greater than the step number assigned to a sub
transaction corresponding to the last update process in the
destination system.

According to an embodiment herein, a step of creating an
old as of state value for each field for each update in the entity
in the source system comprises initializing a temporary vari-
able for each field for each update in the entity in the source
system, fetching all updates for the entity in the source system
from a history of the source system created on or after an
initial time, iterating all the updates for the entity in the source
system in a descending order of an update time for the entity
in the source system. The temporary variable of each field for
each update in the source system is assigned as the old as of
state value.

According to embodiment herein, the method further com-
prises using an event based trigger and a scheduler based
trigger to poll and synchronize a data from a source to a
destination.

When a poll is active at the time of a scheduler based
trigger, then the scheduler based trigger is skipped. When an
event based trigger is received and no poll is active, then the
event based trigger kicks off the polling process. When the
poll is active, the event based trigger sets a flag indicating a
need to repoll at the end of a poll. At the end of a poll, the
repoll flag is checked for. When the repoll flag is set, then
another poll cycle is immediately kicked off.

According to an embodiment herein, the system for inte-
grating data from a source to a destination comprises a con-
nector framework and wherein the connector framework
comprises two connector modules, a polling module and an
adopter module, a processing manager, a mapping manager, a
recovery manager, a conflict manager and a failure manager.
The polling module reads the plurality of changes from the
source and the adapter module to write the plurality of
changes at the destination. The processing manager processes
apoll event using a processing engine. The mapping manager
maps a plurality of fields of the source to corresponding fields
of a destination. The recovery manager automatically recov-
ers a data in case of an unexpected failure. The failure man-
ager controls a failed event during an integration process.

US 9,229,890 B2

7

According to an embodiment herein, the failed event is the
one in which a change in a data is not written to the destina-
tion,

According to an embodiment herein, the conflict manager
solves one or more conflicts occurring during an integration
process and wherein a conflict is occurred, when a current
value of any field of the destination doesn’t match with a last
value of a field of the source.

According to an embodiment herein, a processing engine is
any one of a Java Process Definition Language (JBOSS
JPDL), Drools and an Apache Orchestration Director Engine
(ODE).

According to an embodiment herein, the processing man-
ager reports a successful integration process back to the
source after a completion of a successful integration process.

According to an embodiment herein, the processing man-
ager passes a control to a failure manager after an unsuccess-
ful integration process.

According to an embodiment herein, the recovery manager
controls the adapter module and the polling module.

According to an embodiment herein, the conflict manager
detects a conflict to activate an integration model to resolve
the conflict automatically.

According to an embodiment herein, the integration model
is at least one of a master/slave model, a partitioned owner-
ship model, adynamic ownership model, a peer to peer model
and a custom configuration model. In the master/slave model,
the entity is created at the master and one or more read only
copies of the entity are created in slave system. In the parti-
tioned ownership model, one or more fields of the entity are
created at one or more systems. An ownership of the entity
changes dynamically in the dynamic ownership model. In
peer to peer model, a plurality of sites is able to make changes
to the entities to carry out a conflict detection process and a
conflict resolving process. A replication model is customized
using the custom configuration model.

According to embodiment herein, the system further com-
prises an event based trigger and a scheduler based trigger to
poll and synchronize a data from a source to a destination.

When a poll is active at the time of a scheduler based
trigger, then the scheduler based trigger is skipped. When an
event based trigger is received and no poll is active, then the
event based trigger kicks off the polling process. When the
poll is active, the event based trigger sets a flag indicating a
need to repoll at the end of a poll. At the end of a poll, the
repoll flag is checked for. When the repoll flag is set, then
another poll cycle is immediately kicked off.

These and other aspects of the embodiments herein will be
better appreciated and understood when considered in con-
junction with the following description and the accompany-
ing drawings. It should be understood, however, that the fol-
lowing descriptions, while indicating the preferred
embodiments and numerous specific details thereof, are given
by way of illustration and not of limitation. Many changes and
modifications may be made within the scope of the embodi-
ments herein without departing from the spirit thereof, and
the embodiments herein include all such modifications.

BRIEF DESCRIPTION OF THE DRAWINGS

The other objects, features and advantages will occur to
those skilled in the art from the following description of the
preferred embodiment and the accompanying drawings in
which:

FIG. 1 illustrates a flowchart illustrating a method for inte-
grating a data from a source to a destination, according to an
embodiment herein.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 2 illustrates a block circuit diagram of a system for
integrating a data from a source to a destination, according to
an embodiment herein.

FIG. 3 illustrates a functional block circuit diagram of a
system for integrating a data from a source to a destination,
according to an embodiment herein.

Although the specific features of the embodiments herein
are shown in some drawings and not in others. This is done for
convenience only as each feature may be combined with any
or all of the other features in accordance with the embodi-
ments herein.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Inthe following detailed description, a reference is made to
the accompanying drawings that form a part hereof, and in
which the specific embodiments that may be practiced is
shown by way of illustration. These embodiments are
described in sufficient detail to enable those skilled in the art
to practice the embodiments and it is to be understood that the
logical, mechanical and other changes may be made without
departing from the scope of the embodiments. The following
detailed description is therefore not to be taken in a limiting
sense.

The various embodiments herein provide a method and
system for integrating a data from a source to a destination.
The method for integrating a data from a source to a destina-
tion comprises generating a global-id by concatenating a
source system, name of an entity, an entity project id and an
entity id, setting an event-id corresponding to an entity id in
the global id, polling a data from a plurality of entities of a
source system, sorting a plurality of changes of a source
system based on a time of update and an entity id, creating an
old as of state value for each field for each update in the entity
in the source system, creating a new as of state value for each
field for each update in the entity in the destination system,
sending an event to a destination system with the old as of
state value and the new as of state value for each update in the
entity, comparing the created old as of state value and the
created new as of state values for each field for update in the
entity to detect a conflict on an entity, sending a time of update
in the entity and a revision id of a change to the destination,
comparing the global id with an event id for each entity at the
destination to detect a presence of an entity in the destination
system and processing an entity at the destination system
based an event id. The method further comprises a step of
performing a multistep recovery process to ensure a reliable
synchronization of an entity and to recover a synchronization
of an entity in case of a transaction failure of any kind, when
a main transaction process has a plurality of sub transactions
so that a recovery and synchronization of a data up to a sub
transaction level is possible. The old as of state value and the
new as of state values are created for each field for update in
the entity to synchronize an event in the destination.

According to an embodiment herein, a step of processing
the entity at the destination system comprises executing a
main transaction process for the entity with the same global
id, dividing the update process for the entity into a plurality of
sub transactions, assigning a substep number to each sub
transaction in the update process, comparing a time of revi-
sion of a last update value in the source system with a time of
revision of a last update value in the destination system,
processing the entity at the destination system based on a
comparison of the time of revision of the last update value in
the source system with the time of revision of the last update
value in the destination system and creating a new entity with

US 9,229,890 B2

9

an event id equal to the first global id. The new entity is
created when no entity is found in the destination system with
a same global id. The main transaction process is an update
process for the entity.

According to an embodiment herein, a step of processing
the entity at the destination system based on a comparison of
the time of revision of the last update value in the source
system with the time of revision of the last update value in the
destination system comprises updating the entity at the des-
tination system, comparing a step number assigned to a sub
transaction corresponding to a last update process in the
source system with the step number assigned to a sub trans-
action corresponding to a last update process in the destina-
tion system and performing a sub transaction of the update
process. The entity is updated when the time of revision of the
last update value in the source system is greater than the time
of revision of the last update value in the destination system
and the global id is equal to the event id of the entity.

According to an embodiment of the embodiments herein, a
step number assigned to a sub transaction corresponding to a
lastupdate process in the source system with the step number
assigned to a sub transaction corresponding to a last update
process in the destination system is compared when the time
of revision of the last update value in the source system is
smaller than or equal to the time of revision of the last update
value in the destination system.

According to an embodiment herein, a step of performing
the sub transaction of the update process comprises process-
ing a sub transaction of the update process and moving a
control to a next step in the update process when the step
number assigned to a sub transaction corresponding to the last
update process in the source system is smaller than the step
number assigned to a sub transaction corresponding to the last
update process in the destination system. The sub transaction
is processed when the step number assigned to a sub transac-
tion corresponding to the last update process in the source
system is greater than the step number assigned to a sub
transaction corresponding to the last update process in the
destination system.

According to an embodiment herein, a step of creating an
old as of state value for each field for each update in the entity
in the source system comprises initializing a temporary vari-
able for each field for each update in the entity in the source
system, fetching all the updates for the entity in the source
system from a history of the source system created on or after
an initial time, iterating all updates for the entity in the source
system in a descending order of update time for the entity in
the source system. The temporary variable of each field for
each update in the source system is assigned as the old as of
state value.

According to an embodiment herein, the system for inte-
grating a data from a source to a destination comprises a
connector framework and wherein the connector framework
comprises two connector modules, a polling module and an
adopter module, a processing manager, a mapping manager, a
recovery manager, a conflict manager and a failure manager.
The polling module reads the plurality of changes from the
source and the adapter module to write the plurality of
changes at the destination. The processing manager processes
apoll event using a processing engine. The mapping manager
maps a plurality of fields of the source to the corresponding
fields of a destination. The recovery manager automatically
recovers a data in case of an unexpected failure. The failure
manager controls a failed event during an integration process.

According to an embodiment herein, the failed event is the
one in which a change in a data is not written to the destina-
tion,

10

15

20

25

30

35

40

45

50

55

60

65

10

According to an embodiment herein, the conflict manager
solves one or more conflicts occurring during an integration
process and wherein a conflict is occurred, when a current
value of any field of the destination doesn’t match with a last
value of a field of the source.

According to an embodiment herein, a processing engine is
any one of a Java Process Definition Language (JBOSS
JPDL), Drools and an Apache Orchestration Director Engine
(ODE).

According to an embodiment herein, the processing man-
ager reports a successful integration process back to the
source after a completion of a successful integration process.

According to an embodiment herein, the processing man-
ager passes a control to a failure manager after an unsuccess-
ful integration process.

According to an embodiment herein, the recovery manager
controls the adapter module and the polling module.

According to an embodiment herein, the conflict manager
detects a conflict to activate an integration model to resolve
the conflict automatically.

According to an embodiment herein, the integration model
is at least one of a master/slave model, a partitioned owner-
ship model, adynamic ownership model, a peer to peer model
and a custom configuration model. In the master/slave model,
the entity is created at the master and one or more read only
copies of the entity are created in slave system. In the parti-
tioned ownership model one or more fields of the entity are
created at one or more systems. An ownership of the entity
changes dynamically in the dynamic ownership model. In the
peer to peer model, a plurality of sites is able to make changes
to the entities to carry out a conflict detection process and a
conflict resolving process. A replication model is customized
using the custom configuration model.

According to embodiment herein, the system further com-
prises an event based trigger and a scheduler based trigger to
poll and synchronize a data from a source to a destination.

When a poll is active at the time of a scheduler based
trigger, then the scheduler based trigger is skipped. When an
event based trigger is received and no poll is active, then the
event based trigger kicks off the polling process. When the
poll is active, the event based trigger sets a flag indicating a
need to repoll at the end of a poll. At the end of a poll, the
repoll flag is checked for. When the repoll flag is set, then
another poll cycle is immediately kicked off. An Integration
solution provides an effective way to keep the two systems in
synchronized condition. For achieving the synchronization
and integration, it is very important to transfer all the changes
from a source to a destination. For fetching all changes, the
integration application/module has to look into the source
after every pre set time interval, to check whether any entity is
updated or not. Sometimes an entity gets updated more than
once between the two successive polling intervals.

Consider case in which a first polling is done at a time t1
and the next polling is done at a time t5. But before t5 and after
t1, the entity F1 is updated twice at the times t2 and t4. cl is
a change done at the time t2 and c2 is the change done at the
time t4. Now suppose that the change c2 is dependent on the
change c1 so that the change c2 can only be made only after
doing the change c1. During an integration process, the poll-
ing done at t5 will fetch the entity E1 updated at t4 so that only
the latest state of E1 which is ¢2 is polled and synchronized to
the destination. The change c1 is not synchronized to desti-
nation and c2 fails as c1 which is a prerequisite is not found in
the destination.

When there is a missing of updates of the changes done to
the entity at the destination between two successive polling
intervals when compared with the change history of the enti-

US 9,229,890 B2

11

ties in the source, one way of solving the problem is to look
into the system history. History is common terminology used
in day to day software. A browser/search engine stores the
history of the pages accessed, tabs closed etc. Similarly an
ALM system stores a history to maintain the all operations
done on an entity starting from its creation time to a deletion
time. For any change done in system by an integration user or
normal user, an entry will be immediately made in history
table. In the above mentioned case, e for change c1, history
table will have an entry for a change c1 done with the entity
E1 at time 12 and similarly for the change c2. The Integration
model looks into the history table to check whether there is
any update in the system. For the above case the history table
indicate two updates namely one for c1 and another for c2.
For each update in history table, the system is provided with
a set of fields for the changes in the transaction. The system
stores only those fields that are changed or can store a state of
all the fields at a given point of time. The integration appli-
cation sends the as of state value of the entire fields irrespec-
tive of whether the field is updated or not or sends only the
state of fields which are changed at a given update process.
When the integration application sends only the fields that are
updated, mapping of the destination is performed to derive the
state of two fields F1 and F2, where F1 is updated once in a
first update and F2 is updated twice in a second update. In
such case a polling of the first update in an integration method
results in sending only the value in F1 thereby yielding a
wrong result as value in F2 is the latest value for the entity. To
solve this, there is a need to send as of state value for all the
fields at that time, irrespective of whether the field is updated
or not. Consider system which stores only those fields which
are updated in given update. The as of state values are
obtained by backtracking the field state starting from current
state to the time at which the last update is done in an inte-
gration process. The results are tabulated as follows.

Sr. No Entity Time Field Old Value New Value
1 El tl F1 Vi V2
2 El 2 F2 Vi V2
3 El t3 F1 V2 V3
4 El t4 F2 V2 V3
5 E2 t5 F1 Vi V2

Here t] <t2<t3 <t4.

In the integration process, the polling is done from time t0.
The polling reveals that there are 5 updates after t0, starting
with a first update at time t1. Now at t1, only F1 was updated.
So the as of state value for t1 is V1. To get the as of state value
of F2, initialize F2 temporarily with current state/condition,
V3. All the changes done on E1 after the time t1 are fetched.
The polling results in retrieving the changes with Serial num-
bers 2, 3 and 4. A polling is started with 4th to check whether
the F2 is updated or not. When F2 is found to be updated then
change F2 Temp to old value of F2 namely V2. The data in
serial number 3 indicates that no change is done on F2. The
data in serial number 2 indicates that F2 is changed and so
F2Temp is set as V1. So the field state is changed at the end of
integration process from F1=V1 to F2=V1. The same process
is followed for all other updates.

Every integration solution has two functions. One function
is a polling process to fetch all the changes to an entity from
the system and pass the same for further processing. The
integration solution also functions as an adapter to accept the
changes coming from other systems to write the same to the
destination. During a polling process, the integration solution
has to take care of various expected and unexpected failure

10

15

20

25

30

35

40

45

50

55

60

65

12

cases besides a data fetching process to ensure that all the
changes are polled and a given change is fetched only once.
Similarly the adapter is operated not only for writing the
changes but also for ensuring that no change is written twice
or no change is overwritten in the destination. Even when the
polling module ensures that no change is polled and sent
twice, the adapter is also operated to prevent the handling of
update request coming more than once. For any good integra-
tion solution, all parts are decoupled from each other and all
the components are not aware of the existence of anything
other than their function. The polling part is not aware of the
working and functioning of the adapter and the same holds
good for the adapter too. Sometimes the adapter has to handle
the situation in which a same change is to be written twice in
the destination.

Consider a case in which the adapter does not keep track of
the changes till the changes are written. The adapter fetches
an event E1 and writes the same to destination with state S1
and the system goes down afterwards. Now a user comes and
updates the destination entity to a state S2. When the polling
module sends the entity E1 again at this moment due to some
reason, then the adapter will write E1 again rolling back the
state in S2 to S1. To ensure that the adapter does not roll back
any changes done by an external user, it is important to check
whether the event has already been addressed or not.

The embodiments herein disclose a solution to the above
problem. According to the solution, a time at which the source
entity was last updated is stored (in long format), referred as
Source Last Update, in destination. The Source Last Update is
stored in a custom field in the destination. The custom field is
the field, which is not available in default, but a user is able to
add the properties based on a requirement. The field is
referred as Destination Last Update. When the source entity
E1 was last updated at t1, then the entity at t1 contained in the
destination system is referred as the Destination Last Update.
Whenever an adapter gets any update request for the entity
E1, then the adapter verifies that whether the incoming
Source Last Update is greater than the Destination Last
Update in E1. When the Source Last Update is found to be
greater than the Destination Last Update, then only the update
is carried out.

Consider the following example table comprising entity
with update times.

Entity Time

El tl
El 2

Where t1 <t2.

After an event {E1, t1}, the adapter updates E1 in system
and stores the same at t1 in the destination as a Destination
Last Update. After the polling of event {E1, t2} the adapter
detects that the Source Last Update at t2 is greater than the
Destination Last Update at t1 for E1 and updates the event E1
in the destination at t2 as Destination Last Update. When the
event {E1, 12} is polled again due to a failure in synchroni-
sation process or for some reason, the Adapter repeats the
same process to judge that no update is required as the Source
Last Update in t2 is not greater than the Destination Last
Update in t2.

US 9,229,890 B2

13

Consider a different case in which a plurality of changes is
done in a source system at a same time. The pluralities of
changes are tabulated as follows.

Entity Time Revision

El tl
El tl

rl
12

Where rl, 12 are revision number and r1 <12.

The Adapter fetches an event {E1, t1, r1} and writes the
same to the destination. When the adapter gets the event {E1,
t1,r2},itjudges that no update is required as t1 is same in both
the events and the update is skipped during the integration
process. To solve the above problem in updating, Revision id
is also stored in the Destination Last Update. So the Revision
id stored in the Destination Last Update for the first event
value in the above example is t17. When the second event is
fetched during a polling process, obtained, the revision id for
Source Last Update is t1#2 which is greater than t171 and
hence E1 is updated in the destination.

The abovementioned solution works for a single event,
when the destination system is updated only once. When
there are multiple updates to be done for an entity in the
destination for a single change, then system/custom fields is
updated and comments are added. When the Destinatiom Last
Update is updated and the integration process is stopped
while updating the system/custom fields due to some
unknown reasons, no update is carried out after the resump-
tion of the integration process in the next time as the Source
Last Update is same as the destination Last Update.

One solution for the above mentioned problem is to roll
back the updates done in the case of a failure. The adapter
rolls back the state to the one that was present there before an
update, when an update is failed after updating the system/
custom fields. Hence it is not possible to delete the comments
when there is any update after adding the comments and there
is a failure in a recovery process. The Roll back generates
multiple history records even in such a case. Another solution
to the above mentioned problem is to assign a step number to
a sub step in each update and to attach the step number to
Destination Last Update. For example, a step number 1 is
assigned to an updating process of system/custom fields and
a step number 2 is assigned to a process of adding comments
in above case, then the Destination Last Update formed for
updating system/custom fields is t1#1_1 and the Destination
Last Update formed for adding comments is t171_2. The
comparison of step id is done to find whether the Source Last
Update time and the revision id are same as the Destination
Last Update time and revision id. When the step number in
Destination Last Update is less than the step number of an
update substep, an update is done. When an integration pro-
cess is failed after updating the system/custom fields, then the
value in Destination Last Update is t1#1_1. When an event is
polled again after a resumption process in the next time, the
first step of updating the system/custom fields is not done as
the time and revision id is same as the Destination Last
Update time and revision id and the step number for updating
the system/custom field is not greater than step number 1 in
the Destination Last Update. Later the same check of step
number is done for adding the comment. As the sub step
number 2 for adding the comment is greater than step number
1 in the Destination Last Update, the comments are added.

An aim of integration method is to synchronize a data from
a source to a destination and to keep all the updates done in the
source in a synchronized condition with the destination sys-

10

20

25

30

40

45

55

60

65

14

tem. It is very critical and important for the integration mod-
ule to ensure that the source data is written at a right place in
the destination system. When a user created an entity E1 in the
source system, then the integration application fetched the
entity and wrote the fetched entity into destination as TE1. It
is also important to identify the right entity and to conclude
that E1 in the source is the same as TE1 in the destination. For
achieving this, a primary key of the source entity in the target
system is stored in a reserved custom field. The custom field
is defined as a field which is not present in any system by
default and rather the fields are added by the users based on
their requirement. The name of the custom field is event-id.
The event-id is updated by an integration method. When an
event E1 is synchronized to the destination, an event-id of
TE1 is stored for E1 and similarly an event id of TE2 is stored
for E2. Whenever E1 is updated, the integration method
searches for the event-id for E1. When the integration appli-
cation receives the event id TE1, the update is done. When E2
is updated, integration application searches for the event-id
TE2 in the end system. Further there is a need to append few
more parameters such as System-name and project-name or
project-id in event-id, to make the event-Id unique.

Consider a case of a bi-directional synchronization. The
entity-id is updated only once, as the event-Id does not change
for every update done on entity. The event-id is updated after
synchronizing an update to the destination. When an entity E3
is created in the source and the same is synchronized to the
destination as TE3 with event-Id=abc_projectl_E3. But the
integration process is stopped unexpectedly even before a
post-sync and a write back is done in the source system.
Meanwhile a user updated TE3 when the integration process
is suspended. When the Integration method is started after x
time, the integration application detects that a change has
been done. After detecting a change, the integration applica-
tion wants to synchronize the change in the destination with
the change in the source system. The integration application
tries to synchronise the destination with the other systems.
Since the event-id is not yet written, the integration applica-
tion judges that the entity does not exist and a new entry is
created as a result thereby resulting a duplication of a data.

Another solution is to update event-Id in a source before
updating a destination in a pre-synchronized condition. With
respect to the previous case, an event-Id is already provided
for E3, when an event on TE3 is polled. The integration
application links that the entity E3 in the source is the same as
TE3 in the destination and therefore all the updates between
the two are synchronized.

FIG. 1 illustrates a flowchart illustrating a method for inte-
grating data from a source to a destination. The method com-
prises generating a global-id by concatenating a source sys-
tem, name of an entity, an entity project id and an entity id. An
event-id is set corresponding to an entity id in the global id
(101). A data is polled from a plurality of entities in a source
system (102). A plurality of changes of a source system is
sorted based on a time of update and an entity id (103). Anold
as of state value is created for each field for each update in the
entity in the source system (104). A new as of state value is
created for each field for each update in the entity in the
destination system (105). An event is sent to a destination
system with the old as of state value and the new as of state
value for each update in the entity (106). The created old as of
state value and the created new as of state values for each field
for update in the entity are compared to detect a conflict on an
entity (107). A time of update in the entity and a revision id of
a change is sent to the destination (108). The global id is
compared with an event id for each entity at the destination to
detect a presence of an entity in the destination system (109).

US 9,229,890 B2

15

An entity at the destination system is processed based an
event id (110). The method further comprises a step of per-
forming a multistep recovery process to ensure a reliable
synchronization of entity and to recover a synchronization of
entity in case of transaction failure of any kind (111), when a
main transaction process has a plurality of sub transactions so
that a recovery and synchronization of a data up to a sub
transaction level is possible. The old as of state value and the
new as of state values are created for each field for update in
the entity to synchronize an event in the destination.

A step of processing the entity at the destination system
comprises executing a main transaction process for the entity
with the same global id, dividing the update process for the
entity into a plurality of sub transactions, assigning a substep
number to each sub transaction in the update process, com-
paring a time of revision of a last update value in the source
system with a time of revision of a last update value in the
destination system, processing the entity at the destination
system based on a comparison of the time of revision of the
last update value in the source system with the time of revi-
sion of the last update value in the destination system and
creating a new entity with an event id equal to the first global
id. The new entity is created when no entity is found in the
destination system with a same global id. The main transac-
tion process is an update process for the entity.

A step of processing the entity at the destination system
based on a comparison of the time of revision of the last
update value in the source system with the time of revision of
the last update value in the destination system comprises
updating the entity at the destination system, comparing a
step number assigned to a sub transaction corresponding to a
lastupdate process in the source system with the step number
assigned to a sub transaction corresponding to a last update
process in the destination system and performing a sub trans-
action of the update process. The entity is updated when the
time of revision of the last update value in the source system
is greater than the time of revision of the last update value in
the destination system and the global id is equal to the event
id of the entity.

A step number assigned to a sub transaction corresponding
to a last update process in the source system with the step
number assigned to a sub transaction corresponding to a last
update process in the destination system is compared when
the time of revision of the last update value in the source
system is smaller than or equal to the time of revision of the
lastupdate value in the destination system. A step of perform-
ing the sub transaction of the update process comprises pro-
cessing a sub transaction of the update process and moving a
control to a next step in the update process when the step
number assigned to a sub transaction corresponding to the last
update process in the source system is smaller than the step
number assigned to a sub transaction corresponding to the last
update process in the destination system. The sub transaction
is processed when the step number assigned to a sub transac-
tion corresponding to the last update process in the source
system is greater than the step number assigned to a sub
transaction corresponding to the last update process in the
destination system.

A step of creating an old as of state value for each field for
each update in the entity in the source system comprises
initializing a temporary variable for each field for each update
in the entity in the source system, fetching all updates for the
entity in the source system from a history of the source system
created on or after an initial time, iterating all updates for the
entity in the source system in a descending order of update
time for the entity in the source system. The temporary vari-

10

20

25

30

40

45

16

able of each field for each update in the source system is
assigned as the old as of state value.

FIG. 2 illustrates a block circuit diagram of a system for
synchronizing data from a source to a destination. As shown
in FIG. 2, the system comprises a connector framework, a
processing manager 202, a mapping manager 203, a recovery
manager 204, a conflict manager 205 and a failure manager
206. The connector framework comprises two connector
modules, a polling module 207 and an adopter module 208.
The polling module 207 reads the plurality of changes from
the source 209 and the adapter module writes the plurality of
changes at the destination 210.

The processing manager 202 processes a poll event using a
processing engine. The processing engine is any one of but
not limited to a Java Process Definition Language (JBOSS
JPDL), Drools and an Apache Orchestration Director Engine
(ODE). The processing manager 202 further reports a suc-
cessful synchronization process back to the source 209 after a
completion of a successful synchronization process. After an
unsuccessful synchronization process the processing man-
ager passes 202 a control to a failure manager 206.

The mapping manager 203 maps a plurality of fields of the
source 209 to corresponding fields of a destination.

The recovery manager 204 automatically recovers a data in
case of an unexpected failure. The recovery manager 204
further controls the adapter module 208 and the polling mod-
ule 207.

The conflict manager 205 solves one or more conflicts
occurring during a synchronization process. A conflict is
occurred, when a current value of any field of the destination
does not match with a last value of a field of the source 209.

The failure manager 206 controls a failed event during a
synchronization process. The failed event is the one in which
a change in a data is not written to the destination 210.

The conflict manager 207 detects a conflict to activate an
integration model to resolve the conflict automatically. The
integration model is at least one of but not limited to a master/
slave model, a partitioned ownership model, a dynamic own-
ership model, a peer to peer model and a custom configuration
model. In the master/slave model, the entity is created at the
master and one or more read only copies of the entity are
created in slave system. In the partitioned ownership model,
one or more fields of the entity are created at one or more
systems. In the dynamic ownership model, an ownership of
the entity changes dynamically in the dynamic ownership
model. In the peer to peer to model, a plurality of sites is able
to make changes to the entities to carry out a conflict detection
process and a conflict resolving process. In the custom con-
figuration model, a replication model is customized.

According to embodiment herein, the system further com-
prises an event based trigger and a scheduler based trigger to
synchronize a data from a source to a destination.

The system is combination of both an event based trigger
and scheduled based trigger. In the event based trigger, gen-
erally a trigger is enabled in the source 209. Whenever a
change occurs in the source 209, the source 209 is triggered as
an event and is further consumed by the synchronization
solution. Alternatively, the scheduler based trigger solution
keeps looking for changes in the source 209. The system
herein looks for the changes at specific time interval and also
supports an event based trigger. I[f the event is generated from
the source 209, the system consumes the event as scheduler
job and processes the event.

FIG. 3 illustrates a functional block diagram of a system for
synchronizing data from a source to a destination. An Inte-
gration Manager (IM) framework based on Enterprise Ser-
vice Bus (ESB) principle is a key component of the architec-

US 9,229,890 B2

17

ture. The architecture is based on a hub and spoke topology.
According to FIG. 3, the system comprises a connector
framework 201 and connectors. The connector framework
201 is further provided with two sub modules such as a
polling module 207 and an adapter module 208. The polling
module 207 is responsible for reading the data changes from
the source and adapter module 208 is responsible for writing
the data to the destination.

The system includes a processing manager 201 responsible
for processing a poll event. The processing manager 201 uses
processing engine 301 for processing the data. The process-
ing engine 301 is one of but not limited to JBOSS JPDL &
Drools, Apache ODE. The rule engine 302 executes one or
more business rules in a runtime production environment.
The rules might come from a legal regulation, company
policy or other sources. The rule engine 302 enables the
company policies and other operational decisions to be
defined, tested, executed and maintained separately. The pro-
cessing manager 202 takes an action on a success or failure of
a synchronizing process of the event. In general on comple-
tion of a successtul synchronization process, the processing
manager 202 notifies the source regarding the successful
synchronization of an event or entity at the destination and
adds the destination link of the event.

After a failure of the synchronization process, the process-
ing manager 202 passes the failure report to a failure manager
206. The failure manager 206 controls the entire failed event
during a synchronization process. The failed events are those
in which a writing of changes to destination system is failed.
OIM catch those events and create a failure queue. A synchro-
nization process is retried repeatedly for a preset number of
attempts after an unsuccessful synchronization process. The
entire failed events can be notified and can be processed after
human intervention.

The architecture further comprises a mapping manager 202
responsible is for mapping different fields of the source sys-
tem to corresponding field of the destination. A transforma-
tion mapping services 303 of the mapping manager 202 pro-
vides transformation of one field in the source to a
corresponding field in the destination. The user mapping ser-
vices 304 maps a portal user ID to the user ID of synchroni-
zation system.

In case of system failure or any unexpected failures a
recovery manager 204 automatically recovers the data. The
recovery manager 204 controls both adapter module 208 and
polling module 207. A new connector such as polling module
207 or an adapter module 208 does not need any kind of
configuration or coding.

The conflict Manager 205 solves all the conflicts occurring
during a synchronization process. A conflict occurs when the
current value of any field of destination does not match with
last value of the source field. The conflict manager 205 detects
a conflict and also gives a plurality of integration models to
resolve the conflict automatically. The integration model is at
least one but not limited to a Master/Slave model, a parti-
tioned ownership model, a dynamic ownership model, a peer
to peer model and a custom configuration model.

In the Master/Slave model, an entity is mastered at one
source and read only copies of the entities are created in other
development systems. All changes to the entities must be
made in the master. In the partitioned ownership model, dif-
ferent fields of the entity are mastered at different systems. In
the dynamic ownership model, the entity ownership changes
dynamically, but there is only one owner at any time. The
current owner is indicated based on a value of a field in the
entity. Only the current owner can pass the ownership to
someone else. In the peer to peer model, the changes to the

10

15

20

25

30

35

40

45

50

55

60

65

18

entities can be made from multiple sites. The peer to peer
model typically performs a conflict detection process and a
conflict resolution process. In the custom configuration
model, the actual replication model is custom defined and
typically it is a mixture of combination of the previous mod-
els.

The embodiments herein provide a method and system for
integrating a data from a source to a destination in real time.
The method and system ensures data in multiple systems are
consistent across the systems. The solution provided is useful
for distributed and non-compatible system integration. The
proposed AS of state solution is useful in detecting conflict on
data. Multi step recovery is used for any nested transactional
application for recovery.

One of the major advantages of hub and spoke topology is
that it decouples the source and destination by inserting a
central component acting as an active mediator. The exten-
sion of system implementing a hub and spoke architecture is
also very flexible as compared with a point to point integra-
tion. The central component acting as a hub can be reused
while adding the extra spokes to the system. The architecture
also reduces the number of interfaces needed to build and
maintain the system. Since all the components are loosely
coupled, in IM architecture, it is easy to switch to the pro-
cessing engine. A recovery manager of the proposed system
guarantees “NO LOSS DATA” model.

The embodiments herein ensure that the information in
multiple systems is consistent across the systems. The solu-
tion can be useful for distributed and non-compatible system
integration process. The embodiments provide a common
gateway for accessing a non legacy system. Using the pro-
posedtechniques, the legacy system can be a front-end cluster
of applications, providing the user with a single interface, the
legacy system and enables the user to work with other sys-
tems. The solution fetches the event from a source and writes
the eventto a destination separately. It allows a space between
a read and write operations. Hence a processing of event can
be qualified by some business logic. Thus it provides a policy
or business based integration.

The main objective of IM is to integrate the engineering
systems and build an automated and transparent engineering
ecosystem with full traceability. A current version of IM
supports a bidirectional integration between the systems like
Defect Tracking Systems (Jira, Bugzillaetc), Software Qual-
ity Management System (HP Quality Center), Product Man-
agement System (Rational Doors, Microsoft TFS etc), Appli-
cation Management system (ALMCompleteetc). The
techniques can be used in IT industry like ALM integration,
SCM integration or non-it industry like Telecom for ERP
integration. The common usage in IT industry is a policy
based source code management with defect system.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the embodiments herein
that others can, by applying current knowledge, readily
modify and/or adapt for various applications such specific
embodiments without departing from the generic concept,
and, therefore, such adaptations and modifications should and
are intended to be comprehended within the meaning and
range of equivalents of the disclosed embodiments. It is to be
understood that the phraseology or terminology employed
herein is for the purpose of description and not of limitation.
Therefore, while the embodiments herein have been
described in terms of preferred embodiments, those skilled in
the art will recognize that the embodiments herein can be
practiced with modification within the spirit and scope of the
appended claims.

US 9,229,890 B2

19

Although the embodiments herein are described with vari-
ous specific embodiments, it will be obvious for a person
skilled in the art to practice the embodiments herein with
modifications. However, all such modifications are deemed to
be within the scope of the claims.

It is also to be understood that the following claims are
intended to cover all of the generic and specific features of the
embodiments described herein and all the statements of the
scope of the embodiments which as a matter of language
might be said to fall there between.

What is claimed is:
1. A method for integrating data from a source system to a
destination system, said method comprising the following
steps:
generating a global-id by concatenating a source system
name corresponding to an entity, and a corresponding
entity project id and a corresponding entity id;

setting an event-id corresponding to the entity id present in
the global id;

polling data from a plurality of entities of the source sys-

tem;

sorting a plurality of updates to the plurality of entities of

the source system based on a time of update and a cor-
responding entity id;

creating au old state value for each update on each of the

plurality of entities in the source system;

creating a new state value for each update on each of a

plurality of entities in the destination system;

sending an event to the destination system with the old state

value and the new state value for each of a plurality of
entities;

comparing the old state value and the new state value for

each of the updates to detect a conflicts on the plurality
of entities in the destination system;
sending a time of update of the plurality of entities and a
revision id of a change to the destination system;

comparing the global id with the event id for each entity, at
the source system to detect a presence of the correspond-
ing entity in the destination system;

processing the plurality of entities at the destination system

based on the event id; and

synchronizing the entities at the destination system with

the corresponding entities at the source system.

2. The method according to claim 1 wherein the step of
processing the entity at the destination system comprises the
following steps:

executing a main transaction process for the entity, said

main transaction process having the same global id as
the entity thereof, and wherein the main transaction pro-
cess is an update process for the entity;

dividing the update process for the entity into a plurality of

sub transactions;

assigning a sub-step number to each sub transaction the

update process;

comparing a time of revision of a last update value in the

source system with time of revision of a last update value
in the destination system;

processing the entity at the destination system based on a

comparison of the time revision of the last update value
in the source system with the time of revision of the last
update value in the destination system; and

15

20

25

30

35

45

50

55

60

20

creating a new entity with an event id equal to the global id,
when no entity is found in the destination, system with
said global id.

3. The method of claim 2, wherein a step of processing the
entity at the destination system based on a comparison of the
time of revision of the last update value in the source system
with the time of revision of the last update value in the
destination system, further comprises the following steps:

updating the entity at the destination system, when the time

of revision of the last update value in the source system
is greater than the time of revision of the last update
value in the destination system and the global id is equal
to the event id of the entity;

comparing the sub-step number assigned to a sub transac-

tion corresponding to a last update process in the source
System with the sub-step number assigned to a sub
transaction corresponding to a last update process in the
destination system, when the time of revision of the last
update value in the source system is smaller than or
equal to the time of revision of the last update value in
the destination system; and

performing a sub transaction of the update process.

4. The method as claimed in claim 3, wherein the step of
performing a sub transaction of the update process comprises:

processing a sub transaction of the update process, when

the sub-step number assigned to a sub transaction cor-
responding to the last update process in the source sys-
tem is greater than the sub-step number assigned to a sub
transaction corresponding to the last update process in
the destination system; and

proceeding to the next step in the update process when the

sub-step number assigned to a sub transaction corre-
sponding to the last update process in the source system
is smaller than the sub-step number assigned to a sub
transaction corresponding to the last update process in
the destination system.

5. The method as claimed in claim 1, wherein the step of
creating an old value for each update in the entity in the source
system comprises the following steps:

initializing a temporary variable for each field, for each

update in the entity in the source system;

fetching all updates for the entity in the source system from

a history of the source system created on or after an
initial time;

iterating all updates for the entity in the source system in a

descending order of update time for the entity in the
source system, wherein the temporary variable of each
field for each update in the source system is assigned as
the old value.

6. The method of claim 1, wherein a step of creating a new
value for each field, for each update in the entity in the
destination system comprises the following steps:

initializing a temporary variable for each field, for each

update in the entity in the destination system;

fetching all updates for the entity in the destination system

from a history of the destination system created on or
after an initial time;

iterating all updates for the entity in the destination system

in descending order of update time for the entity in the
destination system, wherein the temporary variable of
each field in each update in the destination is assigned as
the new state value.

#* #* #* #* #*

